Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the KRAS gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

Healthy cell DNA

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>GGT</td>
<td>GTT</td>
<td>Glycine (G)</td>
<td>Valine (V)</td>
</tr>
</tbody>
</table>

Tumour cell DNA

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the **KRAS** gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

Healthy cell DNA

```
GTAGTTGGAGCTGGTTGCGTAGGCAGAGAGT
```

Tumour cell DNA

```
GTAGTTGGAGCTGGTTGCGTAGGCAGAGAGT
```

Table: Healthy vs. Tumour Amino Acid Sequences

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>GGC</td>
<td>GAC</td>
<td>Glycine (G)</td>
<td>Aspartic Acid (D)</td>
</tr>
</tbody>
</table>

Key

C - Cytosine
G - Guanine
T - Thymine
A - Adenine
Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the KRAS gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

Healthy cell DNA

```
350  360  370
A A T A A T G T G A T T T G C C T T C T A G A A C A G T A
```

Tumour cell DNA

```
350  360  370
A A T A A T G T G A T T T G C C T T C T A G A A C A G T A
```

Key

- C - Cytosine
- G - Guanine
- T - Thymine
- A - Adenine

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino Acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>GAC</td>
<td>GAT</td>
<td>Aspartic Acid (D)</td>
<td>Aspartic Acid (D)</td>
</tr>
</tbody>
</table>
Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the KRAS gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amino Acid Table:

- **Healthy cell DNA**

 - DNA sequence: AGAACAAAATTAAAGAGTC

- **Tumour cell DNA**

 - DNA sequence: TCGACACAGCAGGTCAAGAGAGGTACAGT

Key:

- C - Cytosine
- G - Guanine
- T - Thymine
- A - Adenine
Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the KRAS gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

Healthy cell DNA

Tumour cell DNA

Amino Acid Number	Healthy DNA Sequence	Tumour DNA Sequence	Healthy Amino acid	Tumour Amino Acid
146 | GCA | CCA | Alanine (A) | Proline (P)
Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the KRAS gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

Healthy cell DNA

```
TTTCTTTGTTGTATTTGCCATAAATAATACT
```

Tumour cell DNA

```
TTTCTTTGTTGTATTTGCCATAAATAATACT
```

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amino Acid

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td>GAT</td>
<td>GAC</td>
<td>Aspartic acid (D)</td>
<td>Aspartic acid (D)</td>
</tr>
</tbody>
</table>
Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the KRAS gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

Healthy cell DNA

- Sequence: ATGACTGAAATATAAACCTTTGGTAGTTGGA

Tumour cell DNA

- Sequence: ATGACTGAAATATAAACCTTTGGTAGTTGGA

Amino Acid Comparison Table

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino Acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

- **C** - Cytosine
- **G** - Guanine
- **T** - Thymine
- **A** - Adenine

yourgenome.org
Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the KRAS gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the KRAS gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

Healthy cell DNA

![Healthy cell DNA trace]

```
AGTTATGGAAATTCCTTTTATTGAAACATCA
```

Tumour cell DNA

![Tumour cell DNA trace]

```
AGTTATGGAAATTCCTTTTATTGAAACATCA
```

Key

- C - Cytosine
- G - Guanine
- T - Thymine
- A - Adenine

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the KRAS gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

Healthy cell DNA

DNA Sequence:

- 460 to 470: GGTGTGTGGATGATGCTCTTCTATACATTAGTT
- 480: G

Tumour cell DNA

DNA Sequence:

- 460 to 470: GGTGTGTGGATGATGTCTCTTCTATACATTAGTT
- 480: G

Healthy cell DNA

DNA Sequence:

- 320: TCTGAAAGATGTACCTATGGTCCTAGTAGGA
- 330: T
- 340: C

Tumour cell DNA

DNA Sequence:

- 320: TCTGAAAGATGTACCTATGGTCCTAGTAGGA
- 330: T
- 340: C

Table

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino Acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:

- C - Cytosine
- G - Guanine
- T - Thymine
- A - Adenine
Can you spot a cancer mutation?

Below are traces of sequenced DNA displaying different regions of the KRAS gene. DNA sequence from a healthy cell is shown above that of a tumour cell. Using the key provided, write out the DNA sequence for each trace. Compare the healthy and tumour sequences. If you find a difference, circle the letter(s) that have changed and complete the table below using the banner and codon wheel provided.

Healthy cell DNA

GATTCCTACAGGAAGCAAGTAGTAATTGAT

Tumour cell DNA

GATTCCTACAGGAAGCAAGTAGTAATTGAT

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>GATTCCTACAGGAAGCAAGTAGTAATTGAT</td>
<td>GATTCCTACAGGAAGCAAGTAGTAATTGAT</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Healthy cell DNA

AAAATCATTTGAAGGATATTACCATTATAG

Tumour cell DNA

AAAATCATTTGAAGGATATTACCATTATAG

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Healthy DNA Sequence</th>
<th>Tumour DNA Sequence</th>
<th>Healthy Amino acid</th>
<th>Tumour Amino Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>AAAATCATTTGAAGGATATTACCATTATAG</td>
<td>AAAATCATTTGAAGGATATTACCATTATAG</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>