Unravelling the double helix
The function of DNA depends to a large extent on its structure. The three-dimensional structure of DNA was first proposed by James Watson and Francis Crick in 1953. It is one of the most famous scientific discoveries of all time.
X-ray diffraction of DNA crystals results in a cross shape on the X-ray film, which is typical of a molecule with a helix shape.
James and Francis used evidence shared by others, particularly Rosalind Franklin and Maurice Wilkins, to determine the shape of DNA. Rosalind worked with Maurice at King’s College London. She beamed X-rays through crystals of the DNA molecule and then used photographic film to record where the scattered X-rays fell. The shadows on the film were then used to work out where the dense molecules lie in the DNA. This technique is called X-ray diffraction. The DNA crystals resulted in a cross shape on the X-ray film which is typical of a molecule with a helix shape. The resulting X-ray was named Photograph 51 and Maurice shared it with James and Francis.

Photograph 51, the X-ray image produced by Rosalind Franklin and her PhD student Raymond Gosling. The cross pattern visible on the X-ray highlights the helical structure of DNA.
Image credit: Wellcome Images
In 1953 James Watson and Francis Crick published their theory that DNA must be shaped like a double helix.
In 1953 James Watson and Francis Crick published their theory that DNA must be shaped like a double helix. A double helix resembles a twisted ladder. Each ‘upright’ pole of the ladder is formed from a backbone of alternating sugar and phosphate groups. Each DNA base (adenine, cytosine, guanine, thymine) is attached to the backbone and these bases form the rungs. There are ten ‘rungs’ for each complete twist in the DNA helix.

Template from Francis Crick and James Watson’s molecular model of DNA from 1953.
Image credit: Wikimedia Commons.
James and Francis suggested that each ‘rung’ of the DNA helix was composed of a pair of bases.
James and Francis suggested that each ‘rung’ of the DNA helix was composed of a pair of bases, joined by hydrogen bonds. According to Erwin Chargaff’s rules, A would always form hydrogen bonds with T, and C with G.

Illustration to show the structure of the DNA double helix.
Image credit: Genome Research Limited.
From structure to function
The concept that DNA was made of a sequence of paired bases along a sugar-phosphate backbone allowed James Watson and Francis Crick to draw two important conclusions:
The order of bases on each strand makes up the digital code that carries the instructions for life.
- The two strands of DNA provide a simple mechanism for copying the molecule. If separated, each strand provides a template for creating the other strand. By separating the double helix in this way two identical ‘daughter’ molecules can be created.
- The order, or sequence, of bases on each strand makes up the digital code that carries the instructions for life. If we can understand the code, we are closer to understanding how cells work.
Decrypting the code of life
One big question remained unanswered. How do you get from a strand of DNA to a protein?
Even following the huge breakthrough of Francis Crick and James Watson, one big question remained unanswered. How do you get from a strand of DNA to a protein?
Many scientists set to the challenge, but three in particular, Marshall Warren Nirenberg, Har Gobind Khorana and Robert William Holley, were the first to discover how the four bases of DNA could be translated into the 20 building blocks of proteins, also known as amino acids.
To do this, they constructed a very simple strand of RNA, composed of a strand of only one base repeated over and over; in this case it was the base uracil, or U. In the lab, this led to the production of a protein made up of just one type of amino acid, the amino acid phenylalanine. By this simple experiment, in 1961, they had cracked the first letter of the code, a strand of Us translates into a strand of phenylalanine. They could then continue the experiment, but using the other bases, to find out the other letters of the code.
Each codon specifies an amino acid which is added to the protein during synthesis.
Eventually they identified that the letters in DNA are read in blocks of three called a ‘codon’. Each codon specifies an amino acid which is added to the protein during synthesis.
In 1968, the three scientists were rewarded for their work with the Nobel Prize in Physiology or Medicine.

Marshall Warren Nirenberg celebrating his Nobel Prize with champagne in a beaker.
Image credit: Wikimedia Commons.
On the shoulders of giants…
There is no doubt James Watson and Francis Crick played a fundamental role in defining the structure and function of DNA. However, it is important to remember that this discovery was dependant on many other scientists before them. Miescher, Hershey and Chase, Chargaff, Wilkins and Franklin, and all the others mentioned here all deserve to be acknowledged for their work in helping to unravel the fundamental role of DNA in biology. Their research has provided the foundation on which the science of genomics is built and enabled the great strides being made today in our understanding of genetics.
This page was last updated on 2021-07-21
What's the main reason for your rating?
SendWhich of these best describes your occupation?
Sendhow old are students / how old are you?
SendWhat is the first part of your school's postcode?
SendHow has the site influenced you (or others)?
SendThankyou, we value your feedback!
If you have any other comments or suggestions, please let us know at comment@yourgenome.org
Can you spare 5-8 minutes to tell us what you think of this website? Open survey